TRIANGLES

EXERCISE 7.1

- **Q.1.** In quadrilateral ACBD, AC = AD and AB bisects $\angle A$ (see Fig.). Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?
- Sol. In $\triangle ABC$ and $\triangle ABD$, we have $AC = AD \qquad [Given]$ $\angle CAB = \angle DAB \qquad [Q AB bisects \angle A]$ $AB = AB \qquad [Common]$ $\therefore \triangle ABC \cong \triangle ABD.$ [By SAS congruence]**Proved.**

Therefore, BC = BD. (CPCT). **Ans.**

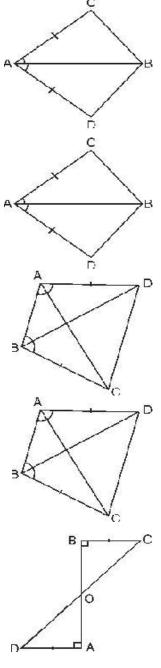
- **Q.2.** ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$ (see Fig.). Prove that (i) $\triangle ABD \cong \triangle BAC$ (ii) BD = AC
 - (ii) BD = AC $(iii) \angle ABD = \angle BAC$
- **Sol.** In the given figure, ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA. In \triangle ABD and \triangle BAC, we have

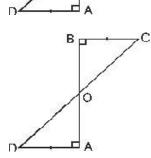
 AD = BC [Given]

$$\angle DAB = \angle CBA$$
 [Given]
 $AB = AB$ [Common]
 $\therefore \Delta ABD \cong \Delta BAC$ [By SAS congruence]
 $\therefore BD = AC$ [CPCT]
and $\angle ABD = \angle BAC$ [CPCT]

Proved

- **Q.3.** AD and BC are equal perpendiculars to a line segment AB (see Fig.). Show that CD bisects AB.
- Sol. In $\triangle AOD$ and $\triangle BOC$, we have, $\angle AOD = \angle BOC$ [Vertically opposite angles) $\angle CBO = \angle DAO$ [Each = 90°] and AD = BC [Given] $\therefore \triangle AOD \cong \triangle BOC$ [By AAS congruence] Also, AO = BO [CPCT] Hence, CD bisects AB **Proved.**





- **Q.4.** l and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig.). Show that $\triangle ABC \cong \triangle CDA$.
- **Sol.** In the given figure, ABCD is a parallelogram in which AC is a diagonal, i.e., AB | DC and BC || AD.

$$\angle BAC = \angle DCA$$

[Alternate angles]

$$\angle BCA = \angle DAC$$

[Alternate angles]

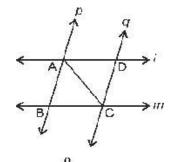
$$AC = AC$$

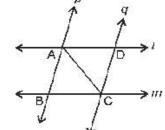
··.

[Common]

$$\Delta ABC \cong \Delta CDA$$
 [By ASA congruence]

Proved.





- **Q.5.** Line l is the bisector of an angle A and B is any point on l. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see Fig.). Show that :
 - (i) $\triangle APB \cong \triangle AQB$
 - (ii) BP = BQ or B is equidistant from the arms of $\angle A$.
- **Sol.** In \triangle APB and \triangle AQB, we have

$$\angle PAB = \angle QAB$$

[l is the bisector of $\angle A$]

$$\angle APB = \angle AQB$$

 $[Each = 90^{\circ}]$

$$AB = AB$$

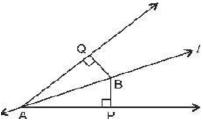
[Common]

$$\therefore$$
 $\triangle APB \cong \triangle AQB$ [By AAS congruence]

Also,
$$BP = BQ$$

[By CPCT]

i.e., B is equidistant from the arms of $\angle A$. **Proved**



- **Q.6.** In the figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.
- **Sol.** $\angle BAD = \angle EAC$ [Given]

$$\Rightarrow \angle BAD + \angle DAC = \angle EAC + \angle DAC$$

[Adding \(\subseteq DAC \) to both sides]

$$\Rightarrow$$
 $\angle BAC = \angle EAC$... (i)

Now, in $\triangle ABC$ and $\triangle ADE$, we have

$$AB = AD$$
 [Given]

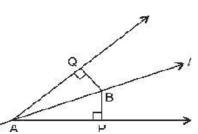
AC = AE[Given)

$$\Rightarrow$$
 $\angle BAC = \angle DAE [From (i)]$

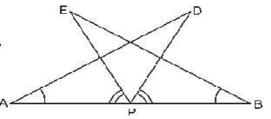
$$\therefore$$
 $\triangle ABC \cong \triangle ADE$ [By SAS congruence]

$$\Rightarrow$$
 BC = DE.

[CPCT] Proved.



Q.7. AB is a line segment and P is its midpoint. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see Fig.). Show that



- (i) $\triangle DAP \cong \triangle EBP$ (ii) AD = BE
- **Sol.** In $\triangle DAP$ and $\triangle EBP$, we have

$$AP = BP$$
 [Q P is the mid-
point of line segment AB]

$$\angle BAD = \angle ABE$$
 [Given]

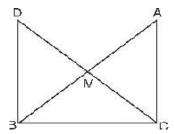
$$\angle EPB = \angle DPA$$

$$[Q \angle EPA = \angle DPB \Rightarrow \angle EPA + \angle DPE \\ = \angle DPB + \angle DPE]$$

$$\Delta DPA \cong \Delta EPB$$

$$\Rightarrow$$
 AD = BE

Q.8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see Fig.). Show that:



- (i) $\triangle AMC \cong \triangle BMD$
- (ii) $\angle DBC$ is a right angle.
- (iii) $\triangle DBC \cong \triangle ACB$

(iv)
$$CM = \frac{1}{2}AB$$

Sol. In $\triangle BMB$ and $\triangle DMC$, we have

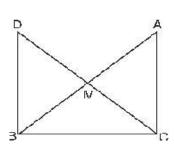
(i)
$$DM = CM$$

$$BM = AM$$

[O M is the mid-point of AB]

[Vertically opposite angles]

$$\therefore \Delta AMC \cong \Delta BMD$$
 [By SAS]



Proved.

AC | BD [Q \(\subseteq \text{DBM} \) and \(\subseteq \text{CAM} \) are alternate angles] $\angle DBC + \angle ACB = 180^{\circ}$ [Sum of co-interior angles]

$$[Q \angle ACB = 90^{\circ}]$$
 Proved.

$$\Rightarrow$$
 $\angle DBC = 90^{\circ}$ **Proved.**

(iii) In $\triangle DBC$ and $\triangle ACB$, we have

$$DB = AC$$

 $BC = BC$

$$\Delta DBC = \Delta ACB$$

[Common]

 $[Each = 90^{\circ}]$

$$\therefore$$
 $\triangle DBC \cong \triangle ACB$

[By SAS] **Proved.** [CPCT]

(iv)
$$\therefore$$
 AB = CD

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}CD$$

Hence,
$$\frac{1}{2}AB = CM$$

[CM =
$$\frac{1}{2}$$
 CD] **Proved.**

TRIANGLES

EXERCISE 7.2

Q.1. In an isosceles triangle ABC, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that :

(i)
$$OB = OC$$
 (ii) AO bisects $\angle A$.

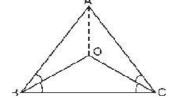
Sol. (i)
$$AB = AC \Rightarrow \angle ABC = \angle ACB$$

[Angles opposite to equal sides are equal]

$$\frac{1}{2} \angle ABC = \frac{1}{2} \angle ACB$$

[OB and OC are bisectors of

 $\angle B$ and $\angle C$ respectively]



$$\Rightarrow$$
 OB = OC [Sides opposite to equal angles are equal]

Again,
$$\angle \frac{1}{2}$$
 ABC = $\frac{1}{2}$ \angle ACB

[∴ OB and OC are bisectors of ∠B and ∠C respectively]

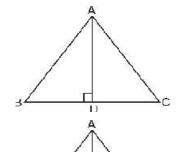
In \triangle ABO and \triangle ACO, we have

$$AB = AC$$
 [Given]

$$OB = OC$$
 [Proved above]
 $\angle ABO = \angle ACO$ [Proved above]

$$\Rightarrow$$
 AO bisects \angle A **Proved.**

Q.2. In $\triangle ABC$, AD is the perpendicular bisector of BC (see Fig.). Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.



Sol. In \triangle ABD and \triangle ACD, we have

$$\angle ADB = \angle ADC$$
 [Each = 90°]

$$BD = CD [Q AD bisects BC]$$

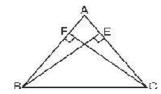
$$AD = AD$$
 [Common]

$$\therefore \Delta ABD \cong \Delta ACD$$
 [SAS]

$$\therefore$$
 AB = AC [CPCT]

Hence, $\triangle ABC$ is an isosceles triangle. **Proved.**

Q.3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Fig.). Show that these altitudes are equal.



Sol. In
$$\triangle ABC$$
,

$$AB = AC$$
 [Given]

$$\Rightarrow$$
 \angle B = \angle C [Angles opposite to equal sides of a triangle are equal]

Now, in right triangles BFC and CEB,

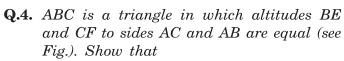
 $\angle BFC = \angle CEB$ [Each = 90°]

 \angle FBC = \angle ECB [Pproved above]

BC = BC [Common]

 $\therefore \quad \Delta BFC \cong \Delta CEB \qquad [AAS]$

Hence, BE = CF [CPCT] **Proved.**



- (i) $\triangle ABE \cong \triangle ACF$
- (ii) AB = AC, i.e., ABC is an isosceles triangle.
- **Sol.** (i) In \triangle ABE and ACF, we have

$$BE = CF$$
 [Given]

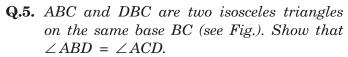
$$\angle BAE = \angle CAF$$
 [Common]

$$\angle BEA = \angle CFA$$
 [Each = 90°]

So,
$$\triangle ABE \cong \angle ACF$$
 [AAS] **Proved.**

(ii) Also,
$$AB = AC$$
 [CPCT]

i.e., ABC is an isosceles triangle Proved.



Sol. In isosceles $\triangle ABC$, we have

$$AB = AC$$

$$\angle ABC = \angle ACB$$
 ...(i)

[Angles opposite to equal sides are equal]

Now, in isosceles ΔDCB , we have

$$BD = CD$$

$$\angle DBC = \angle DCB$$
 ...(ii)

[Angles opposite to equal sides are equal]

Adding (i) and (ii), we have

$$\angle ABC + \angle DBC = \angle ACB + \angle DCB$$

$$\Rightarrow \angle ABD = \angle ACD$$
 Proved.

Q.6. $\triangle ABC$ is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see Fig.). Show that $\angle BCD$ is a right angle.

Sol.
$$AB = AC$$

 $\angle ACB = \angle ABC$...(i)

:.

[Angles opposite to equal sides are equal]

$$AB = AD$$
 [Given]

$$AD = AC$$
 [O $AB = AC$]

 \therefore $\angle ACD = \angle ADC$...(ii) [Angles opposite to equal sides are equal] Adding (i) and (ii)

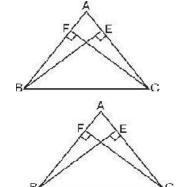
[Given]

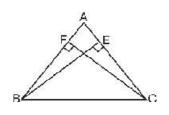
$$\angle ACB + \angle ACD = \angle ABC + \angle ADC$$

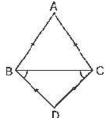
$$\Rightarrow$$
 $\angle BCD = \angle ABC + \angle ADC$

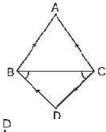
Now, in $\triangle BCD$, we have

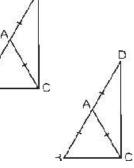
$$\angle BCD + \angle DBC + \angle BDC = 180^{\circ}$$
 [Angle sum property of a triangle]











...(iii)

$$\therefore$$
 $\angle BCD + \angle BCD = 180^{\circ}$

$$\Rightarrow$$
 2\(\times\text{BCD} = 180^\circ

$$\Rightarrow$$
 $\angle BCD = 90^{\circ}$

Hence, $\angle BCD = 90^{\circ}$ or a right angle **Proved.**

- **Q.7.** ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.
- **Sol.** In $\triangle ABC$, we have

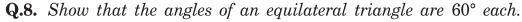
$$\angle A = 90^{\circ}$$
 and $AB = AC$ Given]

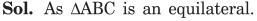
We know that angles opposite to equal sides of an isosceles triangle are equal.

So,
$$\angle B = \angle C$$

Since, $\angle A = 90^{\circ}$, therefore sum of remaining two angles = 90° .

Hence,
$$\angle B = \angle C = 45^{\circ}$$
 Answer.





So,
$$AB = BC = AC$$

Now,
$$AB = AC$$

$$\Rightarrow \angle ACB = \angle ABC$$
 ...(i)

[Angles opposite to equal sides of a triangle are equal]

Again,
$$BC = AC$$

$$\Rightarrow \angle BAC = \angle ABC \dots (ii)$$
 [same reason]

Now, in $\triangle ABC$,

$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$
 [Angle sum property of a triangle]

$$\Rightarrow$$
 $\angle ABC + \angle ABC + \angle ABC = 180^{\circ}$ [From (i) and (ii)]

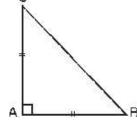
$$\Rightarrow$$
 3 \angle ABC = 180°

$$\Rightarrow$$
 $\angle ABC = \frac{180^{\circ}}{3} = 60^{\circ}$

Also, from (i) and (ii)

$$\angle ACB = 60^{\circ} \text{ and } \angle BAC = 60^{\circ}$$

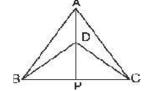
Hence, each angle of an equilateral triangle is 60° **Proved.**



TRIANGLES

EXERCISE 7.3

Q.1. $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig.). If AD is extended to intersect BC at P, show that



- (i) $\triangle ABD \cong \triangle ACD$
- (ii) $\triangle ABP \cong \triangle ACP$
- (iii) AP bisects $\angle A$ as well as $\angle D$.
- (iv) AP is the perpendicular bisector of BC.
- **Sol.** (i) In \triangle ABD and \triangle ACD, we have

$$AB = AC$$
 [Given]
 $BD = CD$ [Given]
 $AD = AD$ [Common]

 \therefore $\triangle ABD \cong \triangle ACD$ [SSS congruence]

(ii) In \triangle ABP and \triangle ACP, we have

$$AB = AC$$
 [Given]
 $\angle BAP = \angle CAP$ [Q $\angle BAD = \angle CAD$, by CPCT]
 $AP = AP$ [Common]

$$\therefore \quad \Delta ABP \cong \Delta ACP$$

[SAS congruence] Proved.

(iii)
$$\triangle ABD \cong \triangle ADC$$
 [From part (i)]
 $\Rightarrow \angle ADB = \angle ADC$ (CPCT)
 $\Rightarrow 180^{\circ} - \angle ADB = 180^{\circ} - \angle ADC$
 $\Rightarrow Also, from part (ii), \angle BAPD = \angle CAP$ [CPCT]
 $\therefore AP \text{ bisects } DA \text{ as well as } \angle D. \textbf{Proved.}$

(iv) Now, BP = CP
and
$$\angle$$
BPA = \angle CPA [By CPCT]
But \angle BPA + \angle CPA = 180° [Linear pair]
So, $2\angle$ BPA = 180°
Or, \angle BPA = 90°

Since BP = CP, therefore AP is perpendicular bisector of BC.

Proved.

- **Q.2.** AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that
 - (i) AD bisects BC (ii) AD bisects $\angle A$.
 - **Sol.** (i) In \triangle ABD and \triangle ACD, we have

$$\angle ADB = \angle ADC$$
 [Each = 90°]
 $AB = AC$ [Given]

$$AB = AC$$

$$AD = AD$$
 [Common]

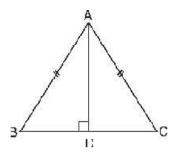
$$\therefore \triangle ABD \cong \triangle ACD$$
 [RHS congruence]

$$\therefore$$
 BD = CD [CPCT]

Hence, AD bisects BC.

(ii) Also, $\angle BAD = \angle CAD$

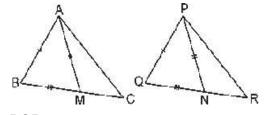
Hence AD bisects ∠A **Proved**



Q.3. Two sides AB and BC and median

AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see

Fig.). Show that:



- (i) $\triangle ABM \cong \triangle PQN$ (ii) $\triangle ABC \cong \triangle PQR$
- **Sol.** (i) In \triangle ABM and \triangle PQN,

we have

$$BM = QN$$

$$[Q BC = QR]$$

$$\Rightarrow \frac{1}{2}BC = \frac{1}{2}QR$$

$$AB = PQ$$

[Given]

$$AM = PN$$

[Given]

$$\therefore \triangle ABM \cong \triangle PQN$$
 [SSS congruence]

Proved.

$$\Rightarrow \angle ABM = \angle PQN$$

[CPCT]

(ii) Now, in $\triangle ABC$ and $\triangle PQR$, we have

$$AB = PQ$$

[Given]

$$\angle ABC = \angle PQR$$

[Proved above]

$$BC = QR$$

[Given]

$$\therefore$$
 \triangle ABC \cong \triangle PQR [SAS congruence]

Proved.

- **Q.4.** BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
- **Sol.** BE and CF are altitudes of a \triangle ABC.

$$\therefore \angle BEC = \angle CFB = 90^{\circ}$$

Now, in right triangles BEB and CFB, we have

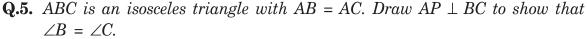
[Given]

$$\therefore$$
 \triangle BEC \cong \triangle CFB [By RHS congruence rule]

$$\therefore \angle BCE = \angle CBF$$
 [CPCT]

Now, in $\triangle ABC$, $\angle B = \angle C$

Hence, $\triangle ABC$ is an isosceles triangle. **Proved.**



Sol. Draw AP \perp BC.

In \triangle ABP and \triangle ACP, we have

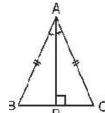
$$AB = AC$$
 [Given]

$$\angle APB = \angle APC$$
 [Each = 90°]

$$AB = AP$$
 [Common]

$$\therefore$$
 $\triangle ABP \cong \triangle ACP$ [By RHS congruence rule]

Also,
$$\angle B = \angle C$$
 Proved. [CPCT]



TRIANGLES

EXERCISE 7.4

- **Q.1.** Show that in a right angled triangle, the hypotenuse is the longest side.
- **Sol.** ABC is a right triangle, right angled at B.

Now, $\angle A + \angle C = 90^{\circ}$

 \Rightarrow Angles A and C are each less than 90°.

Now,

$$\angle B > \angle A$$

 \Rightarrow

[Side opposite to greater angle is longer]

Again,

 \Rightarrow

...(ii)

...(i)

[Side opposite to greater angle is longer]

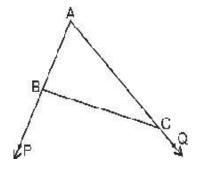
Hence, from (i) and (ii), we can say that AC (Hypotenuse) is the longest side. **Proved**

Q.2. In the figure, sides AB and AC of \triangle ABC are extended to points P and Q respectively. Also, $\angle PBC < \angle QCB$. Show that AC > AB.

Sol.
$$\angle ABC + \angle PBC = 180^{\circ}$$
 [Linear pair] $\Rightarrow \angle ABC = 180^{\circ} - \angle PBC$...(i)

$$\Rightarrow$$
 $\angle ABC = 180^{\circ} - \angle PBC$

Similarly,
$$\angle ACB = 180^{\circ} - \angle QCB$$
 ...(ii)



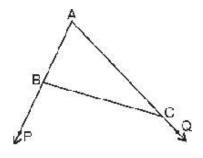
It is given that $\angle PBC < \angle QCB$

$$\therefore$$
 180° – \angle QCB < 180° – \angle PBC

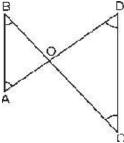
Or
$$\angle ACB < \angle ABC$$
 [From (i) and (ii)]

AB < AC

$$\Rightarrow$$
 AC > AB **Proved.**



Q.3. In the figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.



Sol. ∠B < ∠A

[Given]

...(i)

[Side opposite to greater angle is longer]

[Given]

...(ii)

[Same reason]

Adding (i) and (ii)

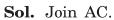
$$BO + CO > AO + DO$$

$$\Rightarrow$$

 \Rightarrow

Proved.

Q.4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see Fig.). Show that $\angle A > \angle C$ and $\angle B > \angle D$.



Mark the angles as shown in the figure. In $\triangle ABC$,

$$\Rightarrow \angle 2 > \angle 4$$

[Angle opposite to longer side is greater] In \triangle ADC,

$$\mathrm{CD} \, > \mathrm{AD} \,$$
 [CD is the longest side]

$$\angle 1 > \angle 3$$

...(ii)

[Angle opposite to longer side is greater] Adding (i) and (ii), we have

$$\angle 2 + \angle 1 > \angle 4 + \angle 3$$

$$\Rightarrow$$

Proved.

Similarly, by joining BD, we can prove that $\angle B > \angle D$.

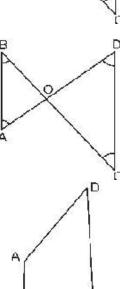
Q.5. In the figure, PR > PQ and PS bisects $\angle QPR$. Prove that $\angle PSR > \angle PSQ$.

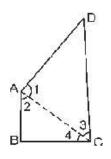
$$\angle PQR > \angle PRQ$$

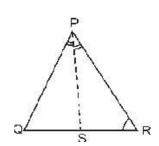
...(i)

[Angle opposite to longer side is greater]

 $\angle QPS > \angle RPS$ [* PS bisects $\angle QPR$] ...(ii)







In
$$\triangle PQS$$
, $\angle PQS + \angle QPS + \angle PSQ = 180^{\circ}$

$$\Rightarrow \angle PSQ = 180^{\circ} - (\angle PQS + \angle QPS)$$

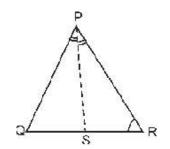
Similarly in
$$\triangle PRS$$
, $\triangle PSR = 180^{\circ} - (\angle PRS + \angle RPS)$

$$\Rightarrow \angle PSR = 180^{\circ} - (\angle PRS + \angle QPS)$$
 [from (ii) ... (iv)

From (i), we know that $\angle PQS < \angle PSR$

So from (iii) and Iiv), \(\subseteq PSQ < \subseteq PSR

 $\Rightarrow \angle PSR > \angle PSQ$ **Proved**



- **Q.6.** Show that of all the segments drawn from a given point not on it, the perpendicular line segment is the shortest.
- **Sol.** We have A line $\stackrel{\leftrightarrow}{l}$ and O is a point not on $\stackrel{\leftrightarrow}{l}$.

$$OP \perp \stackrel{\leftrightarrow}{l}$$
.

We have to prove that OP < OQ, OP < OR and OP < OS.

In
$$\triangle OPQ$$
, $\angle P = 90^{\circ}$

- \therefore $\angle Q$ is an acute angle (i.e., $\angle Q < 90^{\circ}$)
- ∴ ∠Q < ∠P

Hence, OP < OQ

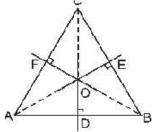
[Side opposite to greater angle is longer]

Similarly, we can prove that OP is shorter than OR, OS etc. Proved.

TRIANGLES

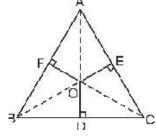
EXERCISE 7.5 (OPTIONAL)

- **Q.1.** ABC is a triangle. Locate a point in the interior of \triangle ABC which is equidistant from all the vertices of \triangle ABC.
- **Sol.** Draw perpendicular bisectors of sides AB, BC and CA, which meets at O. Hence, O is the required point.



Q.2. In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Sol.



- **Q.3.** In a huge park, people are concentrated at three points (see Fig.).
 - A : where there are different slides and swings for children,

B : near which a man-made lake is situated,

C: which is near to a large parking and exit.

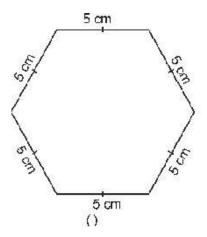
Where should an icecream parlour be set up so that maximum number of persons can approach it?

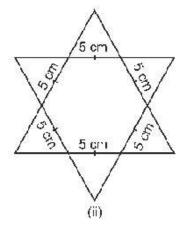
Draw bisectors $\angle A$, $\angle B$ and $\angle C$ of $\triangle ABC$. Let these angle bisectors meet at O.

O is the required point.

Sol. Join AB, BC and CA to get a triangle ABC. Draw the perpendicular bisector of AB and BC. Let they meet at O. Then O is equidistant from A, B and C. Hence, the icecream pra

Q.4. Complete the hexagonal and star shaped Rangolies [see Fig. (i) and (ii)] by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?





Sol.

